Alogliptin, a Dipeptidyl Peptidase‐4 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function and Biogenesis in Diabetic Rabbits
نویسندگان
چکیده
BACKGROUND There is increasing evidence implicating atrial mitochondrial dysfunction in the pathogenesis of atrial fibrillation. In this study, we explored whether alogliptin, a dipeptidyl peptidase-4 inhibitor, can prevent mitochondrial dysfunction and atrial remodeling in a diabetic rabbit model. METHODS AND RESULTS A total of 90 rabbits were randomized into 3 groups as follows: control group (n=30), alloxan-induced diabetes mellitus group (n=30), and alogliptin-treated (12.5 mg/kg per day for 8 weeks) diabetes mellitus group (n=30). Echocardiographic and hemodynamic assessments were performed in vivo. The serum concentrations of glucagon-like peptide-1, insulin, and inflammatory and oxidative stress markers were measured. Electrophysiological properties of Langendorff-perfused rabbit hearts were assessed. Mitochondrial morphology, respiratory function, membrane potential, and reactive oxygen species generation rate were assessed. The protein expression of transforming growth factor β1, nuclear factor κB p65, and mitochondrial biogenesis-related proteins were measured by Western blot analysis. Diabetic rabbits exhibited left ventricular hypertrophy and left atrial dilation without obvious hemodynamic abnormalities, and all of these changes were attenuated by alogliptin. Compared with the control group, higher atrial fibrillation inducibility in the diabetes mellitus group was observed, and markedly reduced by alogliptin. Alogliptin decreased mitochondrial reactive oxygen species production rate, prevented mitochondrial membrane depolarization, and alleviated mitochondrial swelling in diabetic rabbits. It also improved mitochondrial biogenesis by peroxisome proliferator-activated receptor-γ coactivator 1α/nuclear respiratory factor-1/mitochondrial transcription factor A signaling regulated by adiponectin/AMP-activated protein kinase. CONCLUSIONS Dipeptidyl peptidase-4 inhibitors can prevent atrial fibrillation by reversing electrophysiological abnormalities, improving mitochondrial function, and promoting mitochondrial biogenesis.
منابع مشابه
Dipeptidyl Peptidase 4 Inhibition Alleviates Shortage of Circulating Glucagon-Like Peptide-1 in Heart Failure and Mitigates Myocardial Remodeling and Apoptosis via the Exchange Protein Directly Activated by Cyclic AMP 1/Ras-Related Protein 1 Axis.
BACKGROUND Ample evidence demonstrates cardiovascular protection by incretin-based therapy using dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 (GLP-1) under either diabetic or nondiabetic condition. Their action on myocardium is mediated by the cyclic AMP (cAMP) signal; however, the pathway remains uncertain. This study was conducted to address the effect of DPP4i/GLP-1/c...
متن کاملPioglitazone and alogliptin combination therapy in type 2 diabetes: a pathophysiologically sound treatment
Insulin resistance and islet (beta and alpha) cell dysfunction are major pathophysiologic abnormalities in type 2 diabetes mellitus (T2DM). Pioglitazone is a potent insulin sensitizer, improves pancreatic beta cell function and has been shown in several outcome trials to lower the risk of atherosclerotic and cardiovascular events. Glucagon-like peptide-1 deficiency/resistance contributes to isl...
متن کاملCombination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice
Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (iprag...
متن کاملEfficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study.
OBJECTIVE To evaluate the dipeptidyl peptidase-4 (DPP-4) inhibitor alogliptin in drug-naïve patients with inadequately controlled type 2 diabetes. RESEARCH DESIGN AND METHODS This double-blind, placebo-controlled, multicenter study included 329 patients with poorly controlled diabetes randomized to once-daily treatment with 12.5 mg alogliptin (n = 133), 25 mg alogliptin (n = 131), or placebo ...
متن کاملDipeptidyl Peptidase‐4 Inhibitors Attenuate Endothelial Function as Evaluated by Flow‐Mediated Vasodilatation in Type 2 Diabetic Patients
BACKGROUND Endothelial dysfunction is an independent predictor for cardiovascular events in patients with type 2 diabetes (T2DM). Glucagon like peptide-1 (GLP-1) reportedly exerts vasodilatory actions, and inhibitors of dipeptidyl peptidase-4 (DPP-4), an enzyme-degrading GLP-1, are widely used to treat T2DM. We therefore hypothesized that DPP-4 inhibitors (DPP-4Is) improve endothelial function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017